- AD-A124 461 STEP INTO COMPUTAFIONAL GEOMETRY: NOTEBOOK III(U) /1
ILLINOIS UNIV AT URBANA APPLIED COMPUTATION THEDRY
GROUP F P PREPARATA MAY 81 ACT-26 NOOO14-79-C-0424
UNCLASSIFIED F/G 12/4 NL

-
3
*‘-’-:-\-J

o fi o
o itE

e e

‘ MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Cnrllily
~ -
et g - S

[
i
.

=i
©
Ay
<
()
i
<
2

12

An improved algorithm for the rectangle eaclosure problea

D. T. Las and F. P. Preparata

A NS U A i

s

N R TR W i

P P Py YT

S

[Ee———
]

Vo kA A e 2 £ 3 R N AL D LR S TN e) LR B

SCQUI!?Y CLM'!CA‘HQN QF TS IAO‘ M. Dete lnlm

REPORT DOCUMENTATION PAGE BEFORE COMPL ETTNG FORM
NUM 2. GOVY Acctwo'u“n'oimm'm_'-‘
_A Y el
4. TITLE (and Subtitie) . 5. TYPEZ QF REPORT & BSEMOD COVERED
STEP INTO COMPUTATIONAL GEOMETRY Technical Report
Nmnoox III 6. PERFORMING ORG. REPORT NUMBER
(7. AGTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
MCS-78-13642;MCS-79-16847;
F. P. Preparata NO0014=79-C~0424 ; DAAG-29-78-~

C-0016; CDCI-04-AB
3. PERFORMING GROANIZATION NAME ANO AQDRESS 10. PROGRAM ELEMENT. PROJECT, TASK |
coordinated Science Laboratory, 1101 W. Springfield, AREA & WORK UNIT NUMBERS
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

) T4 NONI*QENG AGENCY NAME & ACORESS(/{ ditlerent trom Controiling Office) 1S, SECURITY CLASS. (of this report)

1. CONTROLLING QFFICE NAME ANO AOCRCSS 12, REPORT QDATE
National Science Foundation; May 1981
Joint Services Electronics Program; 13. NUMBER OF PAGES

29

UNCLASSIFIED
T9a. OECLASSIFICATION/ OOWNGRADING
SCHEDULE

e T YR T YT —
18. OISTRISUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. CISTRIBUTION STATEMENT (of the ebetrast entered in Block 20, it difterent from Repert)

18. SUPPLEMENTAARY NOTES

19. K€Y WORDS (Continue on reverse side i nececsary and identify by bdilock numnber)

computational geometry; analysis of algorithms; computational complexity;
monotone polygon; rectangle enclosure; vector dominance; shortest path;
constrained shortest path Mefd—

/)

-

91:1 this notebook we present a collection of three new results ij planar computa-

20. ABSTRACT (Continue on reverse side if necessery and identity dy dlack number)

tional geometry. The first problem is to test a given n-veftexisimple polygon for
monotonicity; this problem can be optimally solved in time A(n)./ The second
result is an improved algorithm for the rectangle enclosure problem; this
algorithm improves over an existing one by using optimal space (p) Finally, the
third result is the construction, in time O(nlogn), of the shortest path between
two points in the interior of an n-vertex polygon P, when the path is constrained

to lie within P.

0D ,"3M™, 1473 Y

A Sl St e i ke 1 8

T
4

e d Brescmasna §
. « "

STEP INTO COMPUTATIONAL GEOMETRY
NOTEBOOK III

by

Franco P. Preparata

This work was supported in part by the National Science Foundation
and in part by the Joint Services Electronics Program (U.S. Army, U.S. i
Navy and U.S. Air Force) and in part by the Control Data Corporation.

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

Approved for public release. Distribution unlimited.

TR 103 A AR W e - 7 T T e ge

‘§ i
P - STEP INTO COMPUTATIONAL GEQMETRY

if NOTEBOOK III

Abstract

1 . In this notebook we present a collection of three new results in planar
computational geometry. The first problem is to test a given n-vertex sim-
ple polygon for monotonicity; this problem can be optimally solved in time
8 (n). The second result is an improved algorithm for the rectangle enclosure
problem; this algorithm improves over an existing one by using optimal space 3

@ (n). Finally, the third result is the construction, in time O(nlogn), of

[——
.

the shortest path between two points in the interior of an n-vertex polygon

o m——d
N [

P, when the path is constrained to lie within P.

| ‘P“_iﬂn Por

oIS e
PPIC %2 o]
w

;] etmoune od

‘ Justifteation
- .
| Pastrivationy

| _AvailadMlgey coaes *”

“'.‘l and/or T
PIsS | Specia1

2

[|

s

1

.

B mttannd Sty [
. v

D D GED OmE g A P Py ey b et

STEPS INTO COMPUTATIONAL GEOMETRY

NOTEBOOK III

F. P. Preparata, Editor

A long while after Notebook II of this collection, which appeared in
September 1977, this notebook contains a few new results in computational
geometry, whose manuscript sizes do not reach the usual standard of tech-
nical reports but whose content may be of interest to researchers in the
field. Again, one of the main reasons of this collection is ease of access.

The first problem considered is the test of whether a given n-vertex
simple polygon is monotone. Since certain computational problems involving
polygons are easier for monotone than for arbitrary simple polygons, the
question has not only theoretical but also practical interest. We present
an 6 (n) time solution of the problem of deciding whether a given simple
polygon P is monotone and, if so, of exhibiting a line £ with respect to
which P is monotone. As a consequence, a monotone polygon can be triangulated
also in time § (n).

Next we have studied a problem which has received some attentiom
recently in the context of the geometry of rectangles: the rectangle
enclosure problem. Given a set of n rectangles in the plane, with sides
parallel to the coordinate axes, we must find all q pairs of rectangles
such that one rectangle of the pair encloses the other. The algoritham
presented is an alternative to and an improvement of the one by Vaishnavi
and Wood. While both techniques have worst-case running time O(nlogzni-q),
the described algorithm uses optimal storage 8 (n) rather than O(nlogzn) as

the Vaishnavi-Wood's technique, and works entirely in-place using very

conventional data structures.

The third problem reported in this notebook is the construction of the
Euclidean shortest path within a simple polygon P. Given source s and
destination t as two points in the interior of P, Shamos had originally solved
this problem (which he called "internal distance") by first constructing
the viewability graph of its vertices and subsequently by applying a
standard shortest path algorithm to the viewability graph, where each edge
is weighted with its length. In actuality only relevant portions of the
viewability graph need be constructed. Here we present an algorithm based
on the observation that if we triangulate P, the shertest path is topologically
a path on the dual of the triangulated P. The described algorithm rums in

time O(nlogn) for an n-vertex P.

For T

e et

F

TESTING A SIMPLE POLYGON FOR HWOI.‘(NICITY*

Franco P. Preparata and Kenneth J. Supowit

1. Introduction
Let P be a simple polygon in the plane having vertices Pg*Pyse*sPqy
counterclockwise on its boundary. The sides of P, called arcs, are denoted

as e, = (pj,pj+1) and are directed from pj to pj+1 (indices are taken

3
modulo n throughout). A gggigicij = (ei’ei+1""'ej-l) is a sequence of
arcs on the boundary of P. cij is monotone with respect to a (straight)
line £ if the projections of the vertices Pi’P1+1""fpj on { are ordered
as the vertices in Cij' P is monotone if there exists a line £ such that
the boundary of P can be partitioned into two chains Ci‘ and Cji that are

monotone with respect to £ (if a direction is chosen on { then one chain
is monotone non-decreasing, the other is monotone non-increasing).
Note that the class of monotone polygons properly contain the class
of convex polygons, and are properly contained in the class of simple
polygons. It appears that certain computational problems involving polygons

are casier for monotone than for arbitrary simple polygons. For example,

the fastest algorithm known to triangulate an arbitrary simple polygon

'fhis work was supported in part by National Science Foundation Grant
MCS-78-13642, by the Joint Services Electronics Program Contract NOOOl4-
79-C-0424, and by Control Data Corporation Contract CDCI-04-AB.

L.

requires 8 (nlogn) time {[l]. However, given a line { and a polygone P
monotone with respect to 4, P can be triangulated in 3 (n) timg (1].

We consider the following problem: given a simple polygon P, decide
whether P is monotone and, if so, exhibit a line L with respect to which
P is monotone. We present & 8 (n) time solution to this problem; hence,
by the above remarks, there is a 3 (n) time algorithm that, given a simple

polygon, triangulates it in 8 (n) time if it is monotome.

2. The algorithm
Given the polygon P, as defined in the preceding sectiom, let Si be

the counterclockwise polar angle at arc e (1 =0,...,n~1) with respect to
a chosen direction (for example, the direction of eo). Define a; as the
counterclockwise wedge from ai_l to Si if the external angle at vertex Py
is 2 180°; as the clockwise wedge from 91-1 to ai, otherwise. Note that,
by the simplicity of P, the angle of wedge oy (i =0,...,n=1) has size

< 180°,

pi.+1 e

external
i/ angle at Py

(a) (b)

Figure 1. 1Illustration of the correspondence between wedge
«%; and the external angle at pj.

gt 7

1r T

A AR S e o

ot P o A o s e e f

S n e a e

PY——

6
j¥k
A
Given a chain C = (e,,e ceese. ,), define x(C) = U a , i.e.,
3 i+l j+k fmi+l i

2(C) is the union of the wedges dj’aj+1""’aj+k-1‘ Obviously, a(C) is

a8 wedge., We now prove:

lemma 1. C = (el,...,ek) is monotone with respect to ¢ if and only if

the normal to { has a polar angle 3 € a(C).

Proof: Given that C is monotone with respect to £, suppose that
3 € o(C) (figure 2b). This implies that there is at least one wedge vy

such that 3 € g, for some i € {1,2,...,k~1}. If we now consider (figure 2a) the

i’

a) ()

Figure 2. Illustration for the proof of Lemma 1.

projections of vertices PisPi.1» and Py, OO £, we have that the projections
of Py and P ., are om the same side of that of Ple1? i.e., C is not mono~
tone with respect to 1, a contradiction. Thus 3 € a(C).

Conversely, suppose that C is not monotone with respect to .. Then
thera 1s a vertex Py of C for which the preceding arguments can be

reversed.

;‘, S .

I S

s
PR Y YL B

T, e T CRPITIN T W 2 M T At = oo oo

B e

ME S s em pw M

.

-
i

[Y

7

Consider now a monotone polygon P. Monotonicity means that there are

two vertices 1 7 and pj of P and a line £, such that chains Ci and C

J it
are monotone with respect to £ (figure 3a). In the polar diagram (figure

3b), we construct the wedges a(cij) and a(cji)' These two wedges are

possibly separated by two wedges Y, and Y i (see figure 3b). Note that

]

ij); also Yi c s whence size (Yi) £ size (ai) <

180°. Similarly, size (y,) < 180°. Moreover, by Lemma 1, the line £'
i

94 €alC,) and 8, € a(C

passing through the origin of the polar diagram and perpendicular to 2

intersects neither «(C { j) nor a(C j i_);

sides of 4'.

(a)

Figure 3. Illustration of the correspondence between a
simple polygon P and polar diagram of its arcs.

The polar rays corresponding to the n arcs of P partition the polar
range (0,27) into n comsecutive wedges (some of which could be of size 0).
Let - be cne - these wedes; the multiplicity u(a) of o is defined as

@ (@) . ;{:!i: a s ai}l » 1.e., the number of wedges o, which contain z. It

ety 7 AL R
RS ST

thus a(cij) and a(cji) lie on opposit:e.

AR p—

8

follows that the previously introduced A and Y, are precisely wedges

b
whose multiplicity is 1 and which are antipodal (i.e., they are crossed
by the same straight line). It is not difficult to see that the argumen..

can be reversed, thus proving the following theorem:

Theorem. A simple polygon P is monotone if and only if the polar
diagram of its arcs contains at least one pair of antipodal intervals of
multiplicity 1.

This theorem immediately suggests an algorithm to test a simple
polygon P for monotonicity: we process the boundary of P in the order

eo,el,...,en_l. When we process an edge e,, we insert @y into the polar

J
diagram by updating the multiplicities of the polar wedges so far con-
structed. Note that the multiplicity of a wedge cannot decrease; since

we are seeking polar wedges of multiplicity 1, it is irrelevant whether a
wedge has multiplicity 2 or greater. Thus we shall label each wedge with
a symbol in the set {0,1,2}, where {0,1} are actual multiplicities and 2
denotes a multiplicity = 2.

During processing we maintain a doubly-linked circular list of polar
angles, each of which separates two adjacent wedges. Each of the two
pointers (forward and backward) is labeled in the set {0,1,2}. In addition,
we have a pointer to the current position 3 in the polar diagram. We
claim that the list satisfies the following properties:

(1) the angles are in increasing counterclockwise order;

(2) the wedge labels — possibly with the exception of one single 0

label — form an alternating string of l's and 2's.

To prove this claim, we outline the algorithm,

Initial step. O is chosen conventionally as 50. There is a single

-

wedge, labeled 0. We insert into the list angle 3 and label with 1

the wedge determined by a5, and 3 is set to él.

General step. Let 3 be the current position and assume that the list
i If :i is larger
is not larger than 3

satisfies properties (1) and (2). We process u
than 3 we scan the list forward, while if ai
we scan it backwards. The scan terminates when ai can be inserted,
In this process we increase by l each wedge label differemnt from 2

and merge any two consecutive wedges receiving identical labels
(merging is, of course, done by deleting the node corresponding to the
angle value which separates them). With regard to the updating of 3,
suppose that 91 is to be inserted into wedge [B,3']: if the pointer

from 3 to B' is labeled 0 or 1, then a new list node is created and

3« Si; else no new node is created and 3 « 3',

Clearly property (1) is satisfied after the general step, because
%i is inserted in its appropriate order. Property (2) is also satisfied,
since wedge merging guarantees the alternation of 1 and 2 labels on
continguous wedges (with labels different from 0).

From the performance viewpoint, it is convenient to charge the computa-
tional work to each individual list node. A list node is initially
established in constant time. Subsequently, during list scams, a node is
traversed in one direction; its pointers are for brevity referred to as
incoming and ocutgoing. The labels of both pointers are updated (0~ 1,
1= 2, 2~ 2) and when both pointers are labeled 2 the node is deleted.
Each node traversal uses constant time and each node can be traversed at
most twice before its deletion. It follows that the total running time
i3 O(mn).

At the termination of the above algorithm, we have a partition of

the polar range [0,2m) into O(n) wedges with alternating labels 1 and 2.

-

10

Scanning the sequence of angles by means of two pointers bl and b2 we
can determine the pairs of antipodal wedges.(l) Specifically, let G(bl)
denote the angle pointed to by bi' We set initialily G(bi) = 0 and
advance B(bz), until a(bz) - Q(bl) 2 180°; at this point<3(b1) is advanced
until S(bz) - a(bl) < 180°, when the advancement of a(bz) i3 resumed; and
so on until S(bz) = 0. This process clearly runs in time O(n) and obtains
all pairs of antipodal wedges (which are known to be O(n) [3]), whose labels
are concurrently compared. Since both major tasks (construction of the
sectors and detection of antipodal pairs) can be completed in linear time,
the entire monotonicity test runs in linear time, which is optimal.

Note that the above algorithm obtains all directions with respect to

which P is monotone.

Conclusion

Testing an arbitrary polygon (i.e., a sequence of vertices) for con-
vexity (3], testing a simple polygon for star-shapedness [2], and testing
a simple polygon for monotonicity are all 3 (n) time problems. An inter-
esting open problem in this area is testing an arbitrary polygon for
simplicity. For this problem, the fastest algorithm known is 2 (nlogm)

time (4], but no super-linear lower bound is known.

Acknowledgements
The authors thank G. T. Toussaint and H. El-Gindy for helpful

discussions on this problem.

(l)The following technique Ls a modification of an algorithm due to
M. I, Shamos (3] to obtain the diameter of a convex polygon.

w " . 4 ——— 2 - P fues s oo . o 3 A
_ . N —— N V—

i l. 11

P _ REFERENCES

[l1] Garey, M. R., D. S. Johnson, F. P. Preparata, and R. E. Tarjan,
"Triangulating a simple polygon," Info. Proc., Letters, Vol. 7, No. &,

b June 1978, pp. 175-179.

{2] Llee, D. T., and F. P. Preparata, "An optimal algorithm for finding the
& kernel of a polygon,” JACM, Vol. 26, 1979, pp. 415-421.
(3] Shamos, M. I., "Computational geometry," Ph.D. thesis, Dept. of
' | Computer Science, Yale University, 1978.
{4] sShamos, M. I. and D. Hoey, “Geometric intersection problems,” 17th

| : Apnyal Symposijum on Foundations of Computer Science, pp. 208-215,

October 1976.

12

An improved algorithm for the rectangle enclosure problem+
D. T. Lee and F. P. Preparata

January, 1981

Abstract. Given a set of n rectangles in the plane, with sides parallel
to the coordinate axes, the rectangle enclosure problem consists of find-
ing all q pairs of rectangles such that one rectangle of the pair encloses
the other. In this note we present an algorithm alternative to the one by
Vaishnavi and Wood; while both techniques have worst-case running time
O(nlogzn + q), ours uses optimal storage O(n) rather than O(nlogzn) as the
Vaishnavi-Wood's technique. Our algorithm works entirely in-place and uses

very conventional data structures.

+l'his work was partially supported by the National Science Foundation under

Grants MCS 78-13642 and MCS 79-16847 and by the Joint Services Electronics
Program under Contract NOOOl4=79-C=0424.

13

AN IMPROVED ALGORITHM FOR
THE RECTANGLE ENCLOSURE PROBLEM

l. Given a set of n rectangles in the plane, with sides parallel to
the coordinate axes (iso~oriented rectangles), the rectangle enclosure
problem consists of finding all q pairs of rectangles such that ome
rectangle of the pair encloses the other.

This problem is an interesting one in the ''geometry of rectangles",
which is relevant to several practical applications, primarily to the
computer-aided design of VLSI circuits [l,2]. The best known solutiom 1is
due to Vaishnavi and Wood { 3] andruns in time O(nlogznd-q) using space
O(nlogzn); their approach makes crucial use of some versatile, but space-
consuming, data structures called range trees and segment trees [4,5].

In this paper a new approach is described which achieves the same
time bound but uses only linear space. Thus it is space-optimal; as to
computation time, there is still a gap between upper- and lower-bound.

2. We begin by transforming the rectangle enclosure problem into an
equivalent one, which is easier to describe and understand. Let
R = {rl,rz,...,tn} be a set of iso-oriented rectangles in the plane (x,y),
where = [x{i),xéi)]x [yfi),yéi)], wich x{i) < xéi) and yfi) < yéi).

Rectangle r, encloses rectangle rj if the following four conditions hold:

-

NOIPIMEIRC

<) g

CORPRN DI ¢ PRSI c)
1

(1) » ¥y » ¥y 2 Y,

These conditions are trivially equivalent to

@) P S P S PO R O PO

’YZ

2 o e o b e+ 1 4

14

which express the well-known relation "< " of dominance between two four-
dimensional points, that is, (-x{j),xéj),-yfj),yz(j))-< (-x{i),xéi),-yfi),yéi)).
Thus, after mapping each T, € ® into its corresponding four-dimensional

point, the rectangle enclosure problem becomes the point dominance problem

in 4-space. Specifically: "Given a set S = {pl,...,pnlp is a point in

4 space! for each point P, €S find a set S, S S such that § = {plp€s,
p=<p,li"

Our approach to solving the point dominance problem is very similar
to the one used in [6] to solve a closely related problem, finding the
maxima of a set of vectors (i.e., the subset M = S defined as M = {p|p€ S
and there is no q€ S such that p < q}). The technique is an application
of the divide-and-conquer principle. Let Uysly,Uq,U, be the coordinates
of our 4-space. The elements of S are reindexed so that (i < j) =
(ul(pi) < ul(pj)). We then have:

Algorithm Dominance
Dl. (Divide) Partition S into S, and §,, where S, = {pl""’anIZJ} and

S, = (Praygroee Pyl

D2. (Recur) Solve the point-dominance problem on sl and 52’ separately.

D3. (Merge) Find all the pairs pi-< Pj’ where P; g 8, and Py 1S 32.

We shall now discuss the implementation of step D3. For Py € Sl and

h

P 52’ since ul(pi) < ul(pj) by construction, we have pi-< pj if and

]
only if uz(pi) < uz(pj) for 4 = 2,3,4., Thus Step D3 is in effect, a
three-dimensional problem. Here again, we solve it by a divide-and-

conquer technique. Specifically, let 52 be the median of {u,(p,)] ?5.5 S,

B P

s
v .

[pes—r
* f

15

Algorithm Merge
e 1 . 1
Ml., (Divide) Partition S1 into 1511’512, and 82 into 1821,522" so that
S11 = fplp € Sl,uz(P) < “2}’ 521 = {plp € sz,uz(p) < uz}, and
S;2 * Sy=S;0 Spp = Sy 7S,y
M2. (Recur) Solve the merge problem on the set pairs {511,521} and

181508558
M3. (Combine) Find all pairs pi-< pj such that Py € S11 and pj € 822.

To convince ourselves of the correctness of the approach, note that
S has been partitioned into {811,812,521,322}. Within each of these four
subget, the point-dominance problem is solved in D2; it remains to be
solved between pairs of subsets. Of the six pairs, {511’512} and {321,822}
are also processed in D2; {511,821} and {512,522} are processed in M2;

are processed in M3, while {S§ need not be considered

1
12°521°
€ 821 we have ul(pi) < ul(pj) and

‘ 1
5117522

because for each Py € S, and p

12 j
uz(pi) > uz(pj). Notice, also that Step M3 (Combine)‘is a two-dimensional
Merge problem (in uy and ua).

The key operation of the entire task is therefore the implementation
of step M3, the two-dimensional Merge (Combine). Indeed the entire computa-
tion reduces to the careful sequencing of steps like M3; therefore, in
what follows we shall concentrate on devising an efficient implementation
of '"Combine'. We shall show that '"Combine'" can be done in time linear in
the input size, after an initial O(nlogn) sorting, which is charged to
the entire point-dominance problem.

3. The initial preprocessing consists in preparing a suitable data
structure for the set S. Specifically, we set up a guadruply-threaded

list (QTL), with bidirectional links. For each p £ §, we construct a node

containing the information (ul(p),uz(p),u3(p),ua(p)); after sorting S on

- R
e e s eI :

each coordinate, we establish four pointers NEXT1,...,NEXT4, so that NEXT]

describe the ordering on u Bidirectional links are established by four

i
additional pointers PREDJ (j = 1,2,3,4). The setting up of the QIL for S,
obviously, uses time O(nlogn).

The QTL lends itself, very naturally,to the linear-time implementation
of the set-splitting operations specified by steps Dl and Ml of the preceding
algorithms., Indeed, suppose we want to split S into {Sl,sz} and that the
elements of, say, Sl, are marked. Then, by traversing the QIL on a
selected pointer NEXTi, the list corresponding to this pointer is easily
"unmerged" into two lists, corresponding to the two sets {sl,sz} of the
partition. Analogously given S1 and Sz, in linear time we can merge the
two corresponding lists using '"natural merge” [7]. Note that splitting
and merging operations simply involve modification of the pointers and
use no additional space for storing data.

Let us now consider the implementation of Step M3, "Combine'", Here

we have two sets, s11 and S 2 of two-dimensional points. The sets are

2
actually represented as a doubly-threaded list (that is, threaded on the
two coordinates Uy and ua); BEG3l and BEG32 denote pointers to the firsc
positions of the two lists, for Sll and 522’ respectively, corresponding
to coordinate u3 (which is the coordinate to be scanned). We also make
use of a new list L, which is destined to contain the sorted sequence of
the uA-cootdina:es of a subset of S11 (specifically, the ua-coordina:es of
the points of S11 whose u3-coordin|:e is no larger than the current scan
value). Temporarily, we use NEXTL and BEGL to denote the forward and

initial pointers for L, although — as we shall see below — NEXT4 can be

used in place of NEXTL. Letting 1822! = 3 we propose the following

algorithm:

. j
. 17 |

i

f P

3 i. Algorithm Combine
begin j; +BEG31, j, « BEG32

while (jz £ s) do

begin if (u [j] & ug i,]) then
bcgin inserc “a[jli into L

I+ i+t

U £ W -

&

else begin £ « BEGL

7 while (1#A) and (u‘,[j] >u () do j
I- 8 begin print rint i :
9 L~ Nmr.u] ;
end :
10 Jz - jz"‘l
end
; end
end

The above algorithm has obviously the structure of a merge technique. 1In

step 3 we test whether we should advance on 511 or on 522. In the former

case we must insert ua[jll into L (Step 4). In the latter case (Steps 6-9),

3y

we scan the list L from its smallest element, thereby determining all the

| e

points dominated by pj ; this part of the procedure is straightforward
2

tt

and runs in time proportional to the number of pairs (jz,t) which are

printed. The crucial task of the procedure is represented by Step 4:

(|

"insert u, [j,] into L". 1Indeed, at first sight, it appears to globally
491

require time proportional to]s 2, since each insertion may require a

1l
full scan of L; a more sophisticated implementation of L with an AVL tree
would cut the global time down to (‘Slllloglslll). However, there is an
interesting way to organize Step &4 so that its global time requirements

be 0(‘5 This is accomplished by a backward pre-scam of the u_-list

1) 3

of 511’ which generates the schedule of insertion into L of the terms of
the uaolis: of 511‘ Indeed, starting from the largest element of the
uz-lisc and proceeding towards the smallest, let u3(j) be the element

currently considered in the scan: we save the current value of PRED4(j]

(on the u,-1list) and update the u,-1list by deleting ua[j}. It is clear

G P o e N N

i8 >ecdiil

[
v'*\

18

that PRED4[j] thus saved will give — in constant time — the place of

insertion of uA[j] when the u3-113t of S,, is scanned forvard. In summary,

11
the insertion schedule is obtained by the following algorithm:

begin 4 ¢ LAST (uj list)
while (PREDS[L] # BEG) do
begin NMA[PRBD&[H] « NEXT4(2]
PRED4 [NEXT4 [£]] + PRED4 (L]
2w -1
end
end

Example: Given the set Sn depicted in figure 1(a), in figure 1(b)

BEGA

<t

4~

—O
<
w
4
FS
+ "47" ‘-1..-.
i 4

<
(-]
-9

[}

o
-
~—0

—
©

~

.

= sScan

a4 —o

p8 . uﬁJ

()

Figure l. An example of set Sp; 1ee03Po} and of the associated
doubly-threaded list. ‘!EX‘h linkg are shown by broken
lines; NEXT4 links by solid lines.

(a)

B L < T L L D, . S

- —
ooy

t

et Srraang P——
. 5 L] +]

)

[a———

L]

19

we illustrate the initial configuration of the u,- and ua-list. The

initial configuration of the array PRED4G is:

3 1 2 3 456 7
PRED4: |7 |5[4|1|8/|2]BEG| 3

The evolution of this array when executing the above scan is shown com-

pactly below (entries being updated are encircled)

After

j 1 2 3 4 5 6 7 3 Scanning

initial PRED¢ | 7 [S5)4|1[{8}|2|BEG|3 -—
7 |s14{1(3)|2]|BEG|3 Pg

BEG) S|4 |1|3|2|BEG]|3 Py
1sEc|Slal1i{3]2l8EG|3 P
3»:0@41323&:c3 Ps

BEG (3 1) 1]312|BEG|3 P,

| BEG®113ZBEGB~P3
final BEG|l|L1|1{3{2|BEG|3 P,

(insertion schedule)

Therefore, the final configuration of the array PRED4 completely specifies
the insertion schedule into the L-list (which becomes the ua-list when
the scan is complete) and line 4 of COMBINE can be executed in comstant
time. This shows that the entire COMBINE procedure runs in time linear
in |s.,| + ISzzl and in the number of pairs (point dominances) obtained.
4. To analyze the performance of the proposed technique we note:
1) All processing occurs in place, uses the QTL arrays, and raduces
to transformations of the pointers' values. Thus the space used
is o).
2) As regards processing time each dominance pair (i{.e., each

enclosed pair of rectangles) is found exactly once and in constant

20

f L. time by the while-loop (7-9) of Combine. Thus, if q is the

number of pairs, 0(q) optimal time is used for this activity.

The remaining computing time depends exclusively on the size n

of S: denote it by D(n). Also denote by My (r,s) the running time

of Algorithm Merge on two sets with r and s d-dimensional points,

P [respectively (d=2,3). Assuming, for simplicity, that n be even,
l [we have
I. 3 D(n) -ZD(n/2)+M3(n/2,n/2)+0(n)

where O(n) is the time used by the "divide' step Dl. Analogously,

Bomisre-d
1 '

we have (assume that |521{ =m and that r be even):

&) Ma(r,s) = Ma(r/z,m) +M3(r/2,s-m) +M2(r/2,mx(m,s-m))

+ 0(r+s)

where, again, O(r+s) time is needed to perform the set split. an
upper-bound to Mj(r,s) is obtained by maximizing the right-gside of
(4) with respect to m. Since Mz(r' »8') is O(r' +s'), arguing as
in [6], we obtain that Ma(r,s) = O((r+8)log(r+9)) and, con-
sequently, that D(n) = O(n(logn)z).

Incidentally, the 3-dimensional dominance problem is implicitly solved

by the technique described in this paper. In other words, given a set of

n points in l-space, the p dominance pairs existing in this set can be

ange

found in time O(nlogn+p) and space 0(a), both of which are optimal

(see [6]).

™~ ™

AT

; (1]

(2]

(31

(4]

{51

61

(71

21

References

H. S. Baird, "Fast algorithms for LSI artwork analysis," Design Automa-
tion and Fault-Tolerant Computing, 2, pp. 179-209; (1978).

U. Lauther, '"4-dimensional binary search trees as a means to speed up
associative searches in the design verification of integrated circuits,”

Jour. of Design Automation and Fault-Tolerant Computing, Vol. 2, un. 3,
pp. 241-247; July 1978.

V. Vaishnavi and D. Wood, "Data structures for the rectangle containment

and enclosure problems," Computer Graphics and Image Processing, 13,

J. L. Bentley and T. Ottmann, "Algorithms for reporting and counting
geometric intersections," IEEE Transactions on Computers, vol. 28,
n. 9, pp. 643-647; September 1979.

H.-W. Six and D. Wood, "The rectangle intersection problem revigited,"
Comp. Sci. Tech. Report 79-CS~24, McMaster University; 1979.

H. T. Kung, F. Luccio, and F. P. Preparata, "Om finding the maxima of
a set of vectors," Journal of the ACM, vol. 22, no. 4, pp. 469-476,
October 1975.

D. E. Knuth, The Art of Computer Programming, val. 1, Sorting and
Searching, Addison-Wesley, Reading, Mass. 1972.

L S |

¢4

SHORTEST PATHS WITHIN A SIMPLE POLYGON

F. P. Preparata

This note describes an efficient solution of the following geometric
problem: given a simple n-vertex polygon P in the Euclidean plane and
two distinguished points s and t, respectively called source and destination,
in the interior of P, find the shortest path between s and t lying entirely
within P.

This problem has been previously considered by M. I. Shamos [1], who
called it "internal distance' and described an algorithm which solves it
in time O(nz). Shamos' method is based on the prior construction of the
so-called viewability graph of a polygon, namely the set of edges which
join pairs of vertices of the polygon and are entirely contained in its
interior; once the viewability graph is obtained, the shortest path within
the polygon is the shortest path on the viewability graph when each edge
is weighted with its length. We shall now show that only relevant portions
of the viewability graph need be constructed thereby reducing the computa-
tion time from O(nz) to O(nlogn).(l)

We need some nomenclature.

Definition 1. An n-vertex simple polygon P = (ql’qz""’qn) is a
closed polygonal chain such that no two nonconsecutive edges intersect. A
diagonal of P is a line segment EIE;, j # i+1, which does not cross any

edge of P. P is said to be triangulated if its interior has been divided

This work was supported in part by National Science Foundation under Grant
MCS 7 -13642 and in part by the Joint Services Electronics Program under
Cont. .ct DAAG-29-78-C-0016.

(1)A11 logarithms are to the base 2.

L R A Vienba e R e o o o

N

’.,.,

23

into n-2 triangles by n-3 diagonals.

Definition 2. The dual tree of a triangulated simple polygon P is a
graph T = (V,E) such that each vertex of V corresponds to a triangle of the
triangulation and each edge of E connects two vertices of V if and only if
the corresponding two triangles share a diagonal of P. The diagonal of P
and the corresponding edge in T are said to be dual.

Obviously T is a tree whose vertices have degree at most 3,

Polygon P

A(s)

Sleeve P!

Figure 1. 1Illustration of polygon, sleeve, diagonals, and dual path -.

Definition 3. A triangulated polygon is called a sleeve if its dual

graph is a polygonal chain. Figure 1 illustrates the notions of triangulated

polygons, diagonals, sleeves, and dual graphs.

e s o b b

s

e N T

e T i

I o s e

24

Our method is based on the following observation. Let A(s) and
A(t) be the two triangles in (the triangulated) P which contain s and ¢,
respectively. In T there is a unique path 7 between the vertices which are
the duals of A(s) and A(t). The edges in ™ are themselves duals of
diagonals of P, so that the sequence of edges of ™ corresponds to a
sequence of diagonals dl’dz""’dp (ordered from s to t). Since di
divides P into two parts, which respectively contain s and t, the

shortest path from s to t within P crosses each and every d ,d

1reeeedpe
Notice that any other diagonal of P is either wholly contained in the
shortest path or does not share any internal point with it, since the
shortest path is entirely contained in the triangles which are duals

of the vertices of .

This also indicates that, without loss of generality, we may rest: . ¢
ourselves to the plane polygon P' which dualizes to =, «ith the further
condition that s and t be themselves vertices of the colygon (that is, we ’
replace A(s) with the triangle having as its vertices s and the extremes
of dl; similarly A(t) is replaced by the triangle having as its verctices
t and the extremes of dp). The plane polygon P' in fact is a sleeve by
Definition 3. Hereafter we assume that the given polygon P is a sleeve
with n vertices, including s and t¢.

Let vil) and va) be the two extreme points of diagonal d,,

1<1i< a3, and let D(s,vfj)) be the shortest path from s to vij),

j = 1,2, within the polygon P. It is easy to show that D(x,vj(.'n) is a polygonal

. 3 (15‘- (2) l
chain whose points are vertices of P. Let 2y ®D(s,vy) D(s,vi). Ia
(1),

/

the zraph Di there i3 a unique vertex v which is common to both D(s,v

<2
-

T s v

25

and D(s,viz)) and is farthest from s on either chain; we say that the
two chains diverge at v and obviocusly D(v,vil)) and D(v,vfz)) have no
edge in common.

Assume at first that neither of the latter subchains is empty; then
we claim that D(v,véj)) (j'-],Z) is an inward-convex polygonal chain,
i.e., it is convex with convexity facing toward the interior of P. To
grove this, we first show that the region RL delimited by D(v,v<1)),

D(v,viz)), and di (briefly called a funnel) is entirely contained in P.
(2)
i).

1
Let ds’ds+1""’di-1 be the diagonals crossed by D(v,vé)) and D(v,v
Clearly the triangle (v,vgl),vgz)) = RS is contained in P; assuming

inductively that R < P, we see that Ri is obtained by adjoining to R

i-1 i-1
all or part of a triangle contained in P, thus saowing that Ri<: P.
Next if D(v,vij)) is not inward-convex, then, by the triangle inequality,

(1
i

there is a shorter path from v to v , entirely contained P, thereby

violating the hypothesis that D(s,vij)) is a shortest path from s to

vij) (see Figure 2). This convexity property also proves that D(s,vil))

Figure 2. Illustration of inward-convexity of D(s,v{j)).

S

26

and D(s,viz)) may diverge at most at one vertex v; for, if they diverge at
some other vertex Uys then they must reconverge at some vertex Ug, and
the two distinct subchains from uy and u, must both be inward-convex, a
clear inconsistency.

In general Di is a (possibly empty) chain branching at some vertex v,
called a cusp into two inward-convex chains, which delimit a (possibly

degenerate) funnel. Notice that either of these two chains could be

(1 # viz)).

empty (but not both, since vy 1f, say, D(v, v) is empty,

then clearly D(v, v(z)) = d in this case the funnel degenerates to a

single diagonal, Ri has no interior, and D, becomes a single chain.

i
The algorithm successively constructs DI’DZ""'Dp and finally ‘

D(s,t). In detail we have:

(1)

Initial Step. Construct D1 by connecting s to vy (2).

and v1

GCeneral Step. (Cons:ruc: D +1 from D) Let v be the cusp of Di’

at which the two subchains u_u -y and u_u Uy diverge, where v=u,

a a+l"’ a a=-1’
(1 . 2) W
vy Uy Vi i Viel

Starting from uy scan the sequence UgsUys el and let j be the smallest

(2))
1+1%4

of Ri’ We distinguish two cases

= Uy Without loss of generality, lec v (see Figure 3).

integer for which v becomes a supporting segment of the boundary

(1) j <a. Delete all edges u,u, for 0 = 2 € j-1 and add

()
edge uJ {+1 °
(2) § > a. Delete all edges v, for 0 € £ S j-l and add
(2.
edge uj (r1} uj becomes the cusp of Rifl’
(1)

A line ! is a supporting line of a convex open curve C {f it has at least
one point in common with C and C lies all on one side of 1, with ics
convexity facing 1.

S (1)
ES i B
i Figure 3. Illustration of the general step. In (a), uj belongs to
LICERL in (b) uj belongs to Ugeeely o Ri+1 is
shown cross-hatched.
T
iﬁ . Cun Final Step. Once Dn_3 has been constructed, one of the two sides
gl ‘- of P incident on t is treated as a diagonal dn-’ and the general step

is applied to this case, yielding D(s,t).
The correctness of the algorithm depends upon the following fact.
for any point u in the triangle defined by the two diagonals d; and di+1’

a shortest path from s to u passes through v. For, assume the contrary.

p—
.

If both D(v,vil)) and D(v,viz)) are nonempty, consider the edge incident
on v on either of these subchains: since P is a sleeve, one of them is a
l i » diagonal of P (although not necessarily an original diagonal of the

{. triangulated P); if either of these subchains is empty, then, as we saw
earlier, the other subchain consists of a single diagonal. In either case,

let v v' be this diagonal and let v v be the other edge (Figure 4).

28

The polygonal chain £(s,u) which defines a shortest path from s to u
crosses v v' at some point p ¥ v. We claim chat the distance 21 from
s to p on 4(s,u) 1s strictly less than that (called 22) on the polygonal
chain obtained by concatenating D(s,v) and the segment vV p . To prove
this, note that the wedge formed by Vv and v v' intersects both di
and di+1; thus, the destination point u in the triangle defined by d1 and
dj_+1 is in one of three regions (see Figure 4); all the three cases,

however, are treated analogously. Assuming, for example, that (s,u) crosses

v v" (case shown in Figure 5) in a point Py, we have, by hypothesis, that

1(s,u) is a shortest path from s to u
4, + length(4(p,py)) < 4, - length (vp) + leng:h(F;l)
where Z(p,pl) is the subchain of Z(s,u) from p to Py- But, by the triangle

inequality, length(;s_) < lengch(;;)i-lengch(z(p,p)), whence
1 1

iZ -£1 > 1en3th(;;)4-1ength(z(p,pl)) -length(csz) 20

i.e., zz > zl. Therefore zz-rleng:h(SGT) > zl-klength(E;T), contradicting

the known fact that the shortest path from s to v' passes through v.

Figure 4. Illuscracion for the proof that a shortest path betweea s and u
passes through v,

Pt 29

We now analyze the running time of the algorithm. Case (1) of the
general step takes constant time; Case (2) may involve scanning a large
number of vertices; however, once a vertex has been scanned and the
corresponding angle has been found to require continuation of the
scanning process, that vertex is definitively eliminated from consideration.
Since in P there are n-2 vertices besides s and t, the entire algorithm
runs in time O(n). The shortest-path algorithm, however, assumes that P

be a sleeve. To transform an arbitrary simple n-vertex polygon into a

sleeve, we first triangulate it in time O(nlogn) using the algorichm

of [2]; the dual T of the given polygon is obtained in time 0(n) and,

still in linear time, the path ™ is obtained. This completes the
transformation of the polygon into the required sleeve. Thus the entire
procedure runs in time O(nlogn), the triangulation task being dominant.

.- However, 1if preprocessing is allowed, the shortest path problem can be

SRS

solved in O(n) time for every pair of points s and t. We summarize the

ot dr i
0

results as a theorem below.
Theorem 1. Given a simple polygon P with n vertices and two points s and ¢

in the interior of P, a shortest path between s and t lying entirely within

PR

P can be found in O(nlogn) time. If preprocessing of the polygon P is
allowed with preprocessing time O(nlogn), then the problem can be solved

in O(n) time for any two points s and t in the interior of P.

References

[' l. M. I. Shamos, Computational Geowetry, Dept. of Comp. Sci., Vale University,
: 1977. To be published by Springer Verlag.

‘?.h T 2. M. R, Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan,

"Triangulating a simple polygon,’ Information Processing Letters,
Vol. 7, No. &4, pp. 175-179, June 1978.

